197k views
4 votes
Find the inverse of A=
Find the Matrix equation of AX=b for X

Find the inverse of A= Find the Matrix equation of AX=b for X-example-1
Find the inverse of A= Find the Matrix equation of AX=b for X-example-1
Find the inverse of A= Find the Matrix equation of AX=b for X-example-2
User Black Flag
by
7.9k points

1 Answer

3 votes

Answer:


\textbf{A}^(-1) =\left[ \begin{array}{cc}-30&71\\-11&26\end{array}\right]


\textbf{X}=\left[\begin{array}{c}-4\\7\end{array}\right]

Explanation:

The inverse of a matrix M is the matrix M⁻¹.


\textsf{If}\; \textbf{M} = \left[ \begin{array}{cc}a&b\\c&d\end{array}\right] \; \textsf{then} \; \textbf{M}^(-1)=\frac{1}{\text{det} \;\textbf{M}}\left[ \begin{array}{cc}d&-b\\-c&a\end{array}\right]


\textsf{For a $2 * 2$ matrix} \; \textbf{M}=\left[\begin{array}{cc}a&b\\c&d\end{array}\right], \; \textsf{the determinant of} \; \textbf{M} \; \textsf{is $ad-bc$}.

Given matrix:


\textbf{A}=\left[\begin{array}{cc}26&-71\\11&-30\end{array}\right]

Therefore:


a=26, \quad b=-71, \quad c=11, \quad d=-30

Calculate the determinant of matrix A:


\begin{aligned}\implies \text{det}\; \textbf{A}&=26 \cdot (-30) - (-71) \cdot 11\\&=-780+781\\&=1\end{aligned}

Therefore, the inverse of matrix A is:


\begin{aligned}\implies \textbf{A}^(-1) & =(1)/(1)\left[ \begin{array}{cc}-30&71\\-11&26\end{array}\right]\\\\&=\left[ \begin{array}{cc}-30&71\\-11&26\end{array}\right]\end{aligned}

------------------------------------------------------------------------------------------

Given matrices:


\textbf{A}=\left[\begin{array}{cc}26&-71\\11&-30\end{array}\right], \quad \textbf{B}=\left[\begin{array}{c}-49\\-132\end{array}\right]


\textsf{Let}\;\textbf{X}=\left[\begin{array}{c}p\\q\end{array}\right]

If AX = B then:


\implies\left[\begin{array}{cc}26&-71\\11&-30\end{array}\right]\left[\begin{array}{c}p\\q\end{array}\right]=\left[\begin{array}{c}-49\\-132\end{array}\right]


\implies\left[\begin{array}{c}7p+(-3)q\\19p+(-8)q\end{array}\right]=\left[\begin{array}{c}-49\\-132\end{array}\right]

Therefore:


  • 7p-3q=-49

  • 19p-8q=-132

Solving simultaneously:


  • p=-4

  • q=7

Therefore:


\implies \textbf{X}=\left[\begin{array}{c}-4\\7\end{array}\right]

User Umashankar
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories