197k views
4 votes
Find the inverse of A=
Find the Matrix equation of AX=b for X

Find the inverse of A= Find the Matrix equation of AX=b for X-example-1
Find the inverse of A= Find the Matrix equation of AX=b for X-example-1
Find the inverse of A= Find the Matrix equation of AX=b for X-example-2
User Black Flag
by
3.1k points

1 Answer

3 votes

Answer:


\textbf{A}^(-1) =\left[ \begin{array}{cc}-30&71\\-11&26\end{array}\right]


\textbf{X}=\left[\begin{array}{c}-4\\7\end{array}\right]

Explanation:

The inverse of a matrix M is the matrix M⁻¹.


\textsf{If}\; \textbf{M} = \left[ \begin{array}{cc}a&b\\c&d\end{array}\right] \; \textsf{then} \; \textbf{M}^(-1)=\frac{1}{\text{det} \;\textbf{M}}\left[ \begin{array}{cc}d&-b\\-c&a\end{array}\right]


\textsf{For a $2 * 2$ matrix} \; \textbf{M}=\left[\begin{array}{cc}a&b\\c&d\end{array}\right], \; \textsf{the determinant of} \; \textbf{M} \; \textsf{is $ad-bc$}.

Given matrix:


\textbf{A}=\left[\begin{array}{cc}26&-71\\11&-30\end{array}\right]

Therefore:


a=26, \quad b=-71, \quad c=11, \quad d=-30

Calculate the determinant of matrix A:


\begin{aligned}\implies \text{det}\; \textbf{A}&=26 \cdot (-30) - (-71) \cdot 11\\&=-780+781\\&=1\end{aligned}

Therefore, the inverse of matrix A is:


\begin{aligned}\implies \textbf{A}^(-1) & =(1)/(1)\left[ \begin{array}{cc}-30&71\\-11&26\end{array}\right]\\\\&=\left[ \begin{array}{cc}-30&71\\-11&26\end{array}\right]\end{aligned}

------------------------------------------------------------------------------------------

Given matrices:


\textbf{A}=\left[\begin{array}{cc}26&-71\\11&-30\end{array}\right], \quad \textbf{B}=\left[\begin{array}{c}-49\\-132\end{array}\right]


\textsf{Let}\;\textbf{X}=\left[\begin{array}{c}p\\q\end{array}\right]

If AX = B then:


\implies\left[\begin{array}{cc}26&-71\\11&-30\end{array}\right]\left[\begin{array}{c}p\\q\end{array}\right]=\left[\begin{array}{c}-49\\-132\end{array}\right]


\implies\left[\begin{array}{c}7p+(-3)q\\19p+(-8)q\end{array}\right]=\left[\begin{array}{c}-49\\-132\end{array}\right]

Therefore:


  • 7p-3q=-49

  • 19p-8q=-132

Solving simultaneously:


  • p=-4

  • q=7

Therefore:


\implies \textbf{X}=\left[\begin{array}{c}-4\\7\end{array}\right]

User Umashankar
by
2.6k points