Answer:
![\begin{gathered} v_2=22.321ms^(-1) \\ d=96.964m\Rightarrow\text{ ( Distance apart )} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/j1ixsz1y9s2uyvfybp6yfwz2lrygs3u4jm.png)
Step-by-step explanation: This problem can be solved using the conservation of momentum concept, the equations used are as follows:
![\begin{gathered} p_i=p_f \\ p_i=p_1+p_2=0\Rightarrow p_i=(m_1+m_2)v_i=0\Rightarrow(1) \\ p_f=p_1+p_2=0\Rightarrow p_f=m_1v_1+m_2v_2=0\Rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/l7mtv1rb2dclw991aenhnys6b2fd2cl4nw.png)
The knowns and unknowns in equation (1) and (2) are as follows:
![\begin{gathered} m_1=87.5\operatorname{kg} \\ v_1=-10ms^(-1) \\ m_2=39.2\operatorname{kg} \\ v_2=\text{?} \\ v_i=0 \end{gathered}]()
Plugging these values in (1) and (2) gives us the following result:
![\begin{gathered} (1)=(2) \\ \therefore\Rightarrow \\ (m_1+m_2)(0)=m_1v_1+m_2v_2=0 \\ (87.5\operatorname{kg})(-10ms^(-1))+(39.2\operatorname{kg})v_2=0 \\ v_2=\frac{(87.5\operatorname{kg})(10ms^(-1))}{(39.2\operatorname{kg})}=22.321ms^(-1) \\ v_2=22.321ms^(-1) \end{gathered}]()
To calculate the distance travelled in 3 seconds, we simply do as follows:
![\begin{gathered} s=vt \\ \therefore\Rightarrow \\ (1)\rightarrow s_1=(-10ms^(-1))\cdot(3s)=-30m \\ (2)\rightarrow s_2=(22.321ms^(-1))(3s)=66.964m \\ \therefore\Rightarrow \\ d=|s_1|+|s_2|=|-30m|+|66.964m|=96.964m \\ d=96.964m \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dk12lu0r3ngzzamadh0hmgzcbc6y5bwmf3.png)