We can calculate the shaded area as the area of the trapezoid less the area of the circle.
The area of the trapezoid is:
![\begin{gathered} A_t=(b_1+b_2)/(2)\cdot h \\ A_t=(23+15)/(2)\cdot8 \\ A_t=(38)/(2)\cdot8 \\ A_t=19\cdot8 \\ A_t=152 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p5cdq4ez59jr81t8jbqanrppplaql3a3y9.png)
The area of the circle of radius r=8/2=4 ft is:
![\begin{gathered} A_c=\pi r^2 \\ A_c=\pi\cdot4^2 \\ A_c\approx3.14\cdot16 \\ A_c\approx50.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7r02lvbx1rc16otctfjzz9och3p3gwr1uq.png)
Then, the shaded area is the difference between the area of the trapezoid and the area of the circle:
![\begin{gathered} A=A_t-A_c \\ A=152-50.3 \\ A=101.7\text{ ft}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fn5myivg8hxzoozoad0ocnj7xw1c3z4beu.png)
Answer: 101.7 ft^2