Given data:
The tensile strength of the string is,
![F^(\prime)=144\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/z7pyig5l8tfdo0n9ed51o2q0k38njhgq82.png)
The mass of the car is,
![m=3.2\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/zhfv35l8h44qtno33qvevs4p3g2vbu4lwm.png)
The length of the string is,
![\begin{gathered} r=125\text{ cm} \\ r=1.25\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/d8wbq994gwd1ai7l61eif4crb0one930od.png)
The force acting on the car is,
![F^(\prime)=(mv)/(r)^2](https://img.qammunity.org/2023/formulas/physics/college/exqmgr6llvjx0zlf71s0icbxkpsgjkqupz.png)
where a is the linear acceleration and m is the mass of the car.
Substituting the known values,
![\begin{gathered} 144=(3.2* v^2)/(1.25) \\ v^2=56.25 \\ v=7.5ms^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/m9pz9oyxowlowi648bvkefli37j1x0brbj.png)
Thus, the angular speed of the car is,
![\begin{gathered} \omega=(v)/(r) \\ \omega=(7.5)/(1.25) \\ \omega=6 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/zk8g6m6sccji4pktl9yikvfi7wd2va0o7r.png)
Each distance of each revolution is,
![\begin{gathered} d=2\pi r \\ d=2\pi*1.25 \\ d=7.85 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sijjh21hrkyhdwqkm6vq6pxlwi4afa3c1q.png)
Thus, the value of angular speed in terms of revolution is,
![\begin{gathered} \omega=(6)/(7.85) \\ \omega=0.76\text{ revolution per second} \\ \omega=0.76*60\text{ revolutions per minute} \\ \omega=45.6\text{ revolutions per minute} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3k96kollupjaab9ombk3nb8py60o0g5egp.png)
Thus, the maximum angular speed of the toy car is 45.6 revolutions per minute.