Answer:
Step-by-step explanation:
Question 3.
Before we simplify the radical expression let us note the following.

Therefore, we can write our radical function as
![\begin{gathered} -\sqrt[]{27}-2\sqrt[]{27}+2\sqrt[]{45} \\ \Rightarrow-\sqrt[]{9*3}-2\sqrt[]{9*3}+2\sqrt[]{9*5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ku10py8bpvnu7m0lj4niuiv9ntmmqwtl0u.png)
Now,
![\begin{gathered} \sqrt[]{9*3}=\sqrt[]{9}*\sqrt[]{3}=3\sqrt[]{3} \\ \sqrt[]{9*5}=\sqrt[]{9}*\sqrt[]{5}=3\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m1jeu7y75pohqxp39fokup7nakyunug0xw.png)
therefore, our expression becomes
![\begin{gathered} -\sqrt[]{9*3}-2\sqrt[]{9*3}+2\sqrt[]{9*5} \\ \Rightarrow-3\sqrt[]{3}-2(3\sqrt[]{3})+2(3\sqrt[]{5}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tj5pw54bzjqfitr3z1jhg4mfhavmxff2ab.png)
which simplifies to give
![-3\sqrt[]{3}-6\sqrt[]{3}+6\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/vki40s6ry3jmj9noxpz7umcq15l4oegwpv.png)
since -3√3 - 6 √3 = - 9 √3 ( just add them up), the above becomes
![-9\sqrt[]{3}+6\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/ecufordrg8shcjn2vwmuweukcd6oqju0o1.png)
We cannot simplify the above function any further. Therefore, the above expression is our final answer.
Question 5.
Since -3√ 27 - 3√27 = -6 √27, our expression becomes
![-3\sqrt[]{20}-6\sqrt[]{27}](https://img.qammunity.org/2023/formulas/mathematics/college/hrcs2jzlp7nn4lv323t3c79r8cbp9y460o.png)
Let us also note that

therefore,
![\begin{gathered} \sqrt[]{27}=\sqrt[]{3*9} \\ \sqrt[]{20}=\sqrt[]{4*5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o78z31drzqrnmm9y9wyunidv6f8hvxo7y4.png)
therefore, our expression becomes
![-3\sqrt[]{4*5}-6\sqrt[]{3*9}](https://img.qammunity.org/2023/formulas/mathematics/college/s3on1oo8y900pzkk9jmref65086a5mz5q6.png)
Now since
![\begin{gathered} \sqrt[]{4*5}=\sqrt[]{4}*\sqrt[]{5}=2\sqrt[]{5} \\ \sqrt[]{3*9}=\sqrt[]{3}*\sqrt[]{9}=3\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8pqniqrkldmqhhi0fxvj0y6ih0hyya68qc.png)
the above becomes
![-3(2\sqrt[]{5})-6(3\sqrt[]{3})](https://img.qammunity.org/2023/formulas/mathematics/college/6hf3tyxa08zy0i9b4cznju92i06o9n2iv4.png)
![\Rightarrow-6\sqrt[]{5}-18\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/wh9m7jc38bx68y05hhlm810a7daa3v7mbq.png)
We cannot simplify the above function any further. Therefore, the above expression is our final answer.