SOLUTION
Write out the function given.
![f(x)=1+\log _2x](https://img.qammunity.org/2023/formulas/mathematics/college/g7zja6orbh3ufuci9g228xmjsimxibop8u.png)
To plot two point in the function, let obtain the point in from the function.
![\begin{gathered} \text{let x=4,} \\ f(x)=1+\log _24 \\ f(x)=1+\log _22^2=1+2\log _22 \\ f(x)=1+2=3 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/me782prmolctlh5v7wfc1xgyl5quaaedxj.png)
Then, the first point is
![(4,3)](https://img.qammunity.org/2023/formulas/mathematics/college/httdv00r6orwrwr3hgl7elde88id1c7emu.png)
Similarly, let x=2
![\begin{gathered} \text{if x=2} \\ f(x)=1+\log _22=1+1=2 \\ \text{Then} \\ (2,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fd61g5gr93f4p6spc1ifbve72z6otf9i52.png)
Then the point is
![(2,2)](https://img.qammunity.org/2023/formulas/mathematics/college/77e0kuizefihvef6elbbikff1juxukidvl.png)
The two point to use are
![(4,3)\text{ and (2,2)}](https://img.qammunity.org/2023/formulas/mathematics/college/nyvx3wsvg5gnma5dqzh30zsevh7pkavjml.png)
The point are (2,2) and (4,3)
Then the vertical asymptotes is obtain by equating the logatithm expression to zero
Hence
![x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/fbdfo5wsa562jve9mar3rnrxezpj37nli7.png)
Vertical asymptotes is x=0
Hence
The image of the graph is given below