The decibel D is related by the formula:
![D=10\log _(10)((l)/(10^(-16)))](https://img.qammunity.org/2023/formulas/mathematics/college/pirajaen8vzk2ucxzhg4l2ppu0m94wgohp.png)
Now, let's find a simplified formula between the two rating D and I using properties of logarithms:
We are going to use the same formula but changing D by d and I by i, then subtract both formulas:
![d=10\log _(10)((i)/(10^(-16)))](https://img.qammunity.org/2023/formulas/mathematics/college/v1ehnoosa00lpok5roi21funvmy1cwbf2n.png)
D-d:
![D-d=10\log _(10)((I)/(10^(-16)))\text{ - 10}\log _(10)((i)/(10^(-16)))](https://img.qammunity.org/2023/formulas/mathematics/college/nuom7sn577jqkx9coa5w6jrqguq2r4xiat.png)
Factorize the number 10:
![D-d=10\lbrack\log _(10)((I)/(10^(-16)))-\log _(10)((i)/(10^(-16)))\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/wxx7kou16fwa690j1r7t6prt5ekhv68wbw.png)
Use the next rule of logarithms:
![\log _a((m)/(n))=\log _am-\log _an](https://img.qammunity.org/2023/formulas/mathematics/college/1zq7y2ojqxdoii1k303egxuosrt9co5u94.png)
So:
![D-d=10\lbrack\log _(10)I-\log _(10)10^(-16)-\log _(10)i+\log _(10)10^(-16)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/xlkt88hvhaj6turdmcps84sddpmt1y588k.png)
Operate the common terms:
![D-d=10\lbrack\log _(10)I-\log _(10)i\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/dfp6vgmsmcl2zk5u6ic032tn413h3xkgjl.png)
Now, we are going to use the same rule presented before by changing the rest by a division:
![D-d=10\log _(10)((I)/(i))](https://img.qammunity.org/2023/formulas/mathematics/college/zhuem8z7tk72xsyuaajx1fo5pi4k0cplvr.png)
With the before formula you can solve the difference between two ratings.
b)The sound intensity now quadruples, using the first given formula find the decibels louder:
So I = 4, replace this value and solve:
![D=10\log _(10)((4)/(10^(-16)))](https://img.qammunity.org/2023/formulas/mathematics/college/lqxnupesksnxu4zqafije2t75cpy59w1pr.png)
We use the same property changing the division by a subtraction:
![D=10\log _(10)4-10\log _(10)10^(-16)](https://img.qammunity.org/2023/formulas/mathematics/college/oih5m37rzjz70loahqapmjsaerg1mqu6lf.png)
Now, we are going to use the next property:
![\log _{}a^b=b\cdot\log _{}a](https://img.qammunity.org/2023/formulas/mathematics/college/5p7nqkpr4jtadnpyd7qkgazyyvgt4y257t.png)
![D=10\log _(10)4-(10\cdot-16\log _(10)10)](https://img.qammunity.org/2023/formulas/mathematics/college/5stsvbf8aravoapm70ay0fcfpoqg3lusyn.png)