So we have two conditions, the first one is that the length (L) of the swimming area is 6 meters more than the width (W) so:
![L=6W](https://img.qammunity.org/2023/formulas/mathematics/college/oc02yypjbjcvqi98ie88ovhfocyejxxe3b.png)
and the other condition is that the area is 180 square meters so we can writte it like:
![180=L\cdot W](https://img.qammunity.org/2023/formulas/mathematics/college/lu37w6o2472gmu5cwbfvx1mb9bq1dj45r1.png)
Now we have 2 equations and 2 ingognitas so we can replace the first equation into the second equation like this:
![180=(6W)\cdot W](https://img.qammunity.org/2023/formulas/mathematics/college/aj1j3puiiyuv2fhjgwhpl7ofckupmug2xk.png)
and we solve for W so
![\begin{gathered} 180=6W^2^{} \\ W^2=(180)/(6)=30 \\ W=\sqrt[]{30}=5.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z3svdmdxrkwgm8rnx1brqzwfvxhltj4kuu.png)
Now with the value of W we can replace it in the first equation so:
![L=6(5.5)](https://img.qammunity.org/2023/formulas/mathematics/college/mdbq5kwcbeek2m245gsp0ogllmezmqsnwn.png)
so:
![L=33](https://img.qammunity.org/2023/formulas/mathematics/college/aiggewvaaus5wvu93qltc5t04t715yfpq4.png)
The dimensions are:
![\begin{gathered} \text{length}=33m \\ \text{width}=5.5m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eg4297599blxsmro0nya2v8g40byk6y28t.png)