This is a right triangle.
To find length PQ we need to use the pythagorean theorem; we have to remember that it states that:
![c^2=a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/udh1dsx7kwgfauditnn86pp2qhoycm1tvv.png)
where a and b are the legs and c is the hypotenuse.
Applying it to the triangle given we have:
![\begin{gathered} 25^2=PQ^2+24^2 \\ PQ^2=25^2-24^2 \\ PQ^2=625-576 \\ PQ^2=49 \\ PQ=\sqrt[]{49} \\ PQ=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sh5qbqkhta3acv9uhjf046y09tm1umtdaj.png)
Therefore the side PQ=7
To determine the angle R we can use the cosine function that is defined as:
![\cos \theta=\frac{\text{adj}}{\text{ hyp}}](https://img.qammunity.org/2023/formulas/mathematics/college/7nz7gz23k2yhzq91c1lgiuwgjcsee84box.png)
then for angle R we have:
![\begin{gathered} \cos R=(24)/(25) \\ R=\cos ^(-1)((24)/(25)) \\ R=16.26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cln7ltk87irq5z293nmhq2d90q5vo9jyum.png)
Hence angle R=16.26°.
Now, for angle P we use the fact that the interior angles of any triangle have to add to 180°, then we have:
![\begin{gathered} P+R+Q=180 \\ P+16.26+90=180 \\ P=180-90-16.26 \\ P=73.74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ledag86x3twcqclsbkpjg2qmt6i4rrs7dl.png)
Therefore angle P=73.74°