Given the functions
![\begin{gathered} A(t)=107(1.015)^t \\ \text{and} \\ B(t)=88(1.025)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gst1mhhips88yfmgt3me86ljkffgtculvy.png)
1) Notice that both functions are exponential. In general, an exponential growth function can be written as shown below
![P(t)=P_0(1+r)^t^{}](https://img.qammunity.org/2023/formulas/mathematics/college/fs0e9bytfoproy3ooya3yao3kxu6q4cj8m.png)
where r is the rate of growth of function P(t).
Therefore, in our case,
![\begin{gathered} \Rightarrow A(t)=107(1+0.015)^t\Rightarrow r_A=0.015 \\ \Rightarrow B(t)=88(1+0.025)^t\Rightarrow r_B=0.025 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/awas4i6gjoncf583zwmror8il7xhbg2sge.png)
Thus, forest B is growing at a faster rate than forest A. The answer to part 1 is forest B
2) and 3) The amount of trees in each forest is given by A(0) and B(0), respectively; thus,
![\begin{gathered} A(0)=107(1.015^{})^0=107\cdot1=107 \\ B(0)=88(1.025)^0=88\cdot1=88 \\ \Rightarrow A(0)-B(0)=107-88=19 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bgd2itxkwet7cafcg759fgrsputstnvevs.png)
Therefore, forest A had a greater number of trees initially, and it exceeded forest B by 19 trees. The answer to part 2 is Forest A, and the answer to part 3 is 19 trees.
4) and 5)
Similarly, we need to find the values of A(30) and B(30)
![\begin{gathered} A(30)=107(1.015)^(30)=167.24958\ldots \\ B(30)=88(1.025)^(30)=184.58594\ldots \\ \Rightarrow B(30)-A(30)\approx17.34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/781ia045vs0a843lqwtnxukojvgm187y4l.png)
Therefore, the answer to part 4 is Forest B, and the answer to part 5 is 17.34 trees.