Given the function:
![f(x)=x^3-3x^2](https://img.qammunity.org/2023/formulas/mathematics/college/lw40noikwr7uuyw1x1swn233il9mie3gio.png)
The zeros of the function can be said to be the x-intercept of the given function.
To find the zeros, substitute 0 for f(x) and evaluate.
We have:
![\begin{gathered} 0=x^3-3x^2 \\ \\ \text{ Factor out x}^2 \\ \\ x^2(x-3)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eo27zexshu56w949oufec8fkmr9mmfnq20.png)
We have the individual factors:
![\begin{gathered} x^2 \\ (x-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uv0itrocg4x6ilm5m7p1bivmrrfjm3bm77.png)
Equate the individual factors to zero:
![\begin{gathered} x^2=0 \\ x-3=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pxmezs0j2zynjg6s7d578ufxxis5v5l5dx.png)
Solve each factor for x:
![\begin{gathered} x^2=0 \\ \text{Take the square root of both sides:} \\ \sqrt[]{x^2}=\sqrt[]{0} \\ x=0 \\ \\ \\ x-3=0 \\ \text{Add 3 to both sides:} \\ x-3+3=0+3 \\ x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xtnq8320seph50sucg930iru9l370arrrb.png)
Therefore, the zeros of the function are:
x = 0, 3
In point form, the zeros are:
(0, 0) and (3, 0)
ANSWER:
x = 0, 3