The simple interest formula is as follows:
![I=P\cdot r\cdot t](https://img.qammunity.org/2023/formulas/mathematics/college/69vhnc5w9tpcsasto5gwfgxvw61bssniw9.png)
Where P is the principal amount (the initial amount), r is the annual rate and t is the time in years.
The final amount is the initial amount plus the interest, so:
![\begin{gathered} V=P+I \\ V=P+P\cdot r\cdot t \\ V=P(1+rt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8qd89225icslx6lfo0y339qlr5trj2ih0x.png)
We have the princiapl value $134,000, the final value $1,000,000 and the rate of 7.7%, so:
![\begin{gathered} V=1000000 \\ P=134000 \\ r=7.7\%=0.077 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3zemny1xwjzyvzqouqoy46f40uc2ejogua.png)
So, we can solve for t and input the values:
![\begin{gathered} V=P(1+rt) \\ \frac{V}{P_{}}=1+rt \\ rt=(V)/(P)-1 \\ t=((V)/(P)-1)/(r) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u0ohkri596fpmwrekrwzhx6szskj0h6z7r.png)
![\begin{gathered} t=((1000000)/(134000)-1)/(0.077) \\ t=(7.4626\ldots-1)/(0.077) \\ t=(6.4626\ldots)/(0.077) \\ t=83.93\ldots\approx84 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ws19flv5fvmd5j4n6lx5w69r0x0ewnyv46.png)
So, you must wait approximately 84 years.