176k views
0 votes
Build the rational expression into an equivalent rational expression with the indicated denominator.

Build the rational expression into an equivalent rational expression with the indicated-example-1
User Ujifgc
by
3.3k points

1 Answer

5 votes
Answer:
(m-3)/(m+2)\text{ = }\frac{m^2-6m\text{ }+\text{ 9}}{m^2-m-6}

Step-by-step explanation:

Given:


(m-3)/(m+2)\text{ = }(unknown)/(m^2-m-6)

To find:

the numerator of the rational expression on the right

To determine the numerator, we need to factorise the denominator:


\begin{gathered} factors\text{ of -6 whose sum gives -1 are -3 and 2} \\ m^2\text{ - m -6 = m}^2\text{ - 3m + 2m - 6} \\ =\text{ m\lparen m - 3\rparen + 2\lparen m - 3\rparen} \\ =\text{ \lparen m + 2\rparen\lparen m - 3\rparen} \end{gathered}


\begin{gathered} (m-3)/(m+2)\text{ = }\frac{unknown}{(m\text{ + 2\rparen\lparen m}-3)} \\ from\text{ the above, we see the denominator of the left side was multiplied by \lparen m -3\rparen to get} \\ the\text{ denominator on the right} \\ \\ So\text{ for the expression on the right to be equivalent to that on the left, } \\ \text{we will multiply the numerator on the left by \lparen m - 3\rparen} \end{gathered}
\begin{gathered} denominator\text{ on the left = m + 2} \\ denominator\text{ on the right = \lparen m + 2\rparen\lparen m - 3\rparen} \\ \\ numerator\text{ on the left = m - 3} \\ numerator\text{ on the right = \lparen m - 3\rparen\lparen m - 3\rparen} \end{gathered}

Expanding the numerator on the right:


\begin{gathered} (m\text{ - 3\rparen\lparen m-3\rparen = m\lparen m - 3\rparen - 3\lparen m - 3\rparen} \\ =\text{ m}^2\text{ - 3m - 3m + 9} \\ =\text{ m}^2\text{ - 6m + 9} \end{gathered}

User CMircea
by
3.4k points