Set a(x)=(1/2)^x; then,
![\Rightarrow a(x-2)+1\to\text{two units to the right and one unit up}](https://img.qammunity.org/2023/formulas/mathematics/college/ls9o54pm17hsac3mhc7c6fuxx4b1xl8z5h.png)
Furthermore,
![a(x-2)+1=((1)/(2))^(x-2)+1](https://img.qammunity.org/2023/formulas/mathematics/college/bmjtv606smbvwp6vtwjmm4dyc9ga0x5w6d.png)
Then, the parent function of function 1) is (1/2)^x.
On the other hand, if b(x)=3^x; then,
![\begin{gathered} \Rightarrow2b(x)=2\cdot3^x \\ \text{and} \\ 2b(x)\to\text{dilation of b(x) by a factor equal to 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kqhq3uqjgzgrqiwkdj9wyoinw1ary8el6r.png)
Therefore, the parent function of 2*3^x is 3^x.
Now, we need to find 9 points on each parent function, as shown below
![\begin{gathered} a(-4)=16 \\ a(-3)=8 \\ a(-2)=4 \\ a(-1)=2 \\ a(0)=1 \\ a(1)=(1)/(2) \\ a(2)=(1)/(4) \\ a(3)=(1)/(8) \\ a(4)=(1)/(16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nkgtumxc1ea1bsqica669veqvixch1u88r.png)
And
![\begin{gathered} b(-4)=(1)/(81) \\ b(-3)=(1)/(27) \\ b(-2)=(1)/(9) \\ b(-1)=(1)/(3) \\ b(0)=1 \\ b(1)=3 \\ b(2)=9 \\ b(3)=27 \\ b(4)=81 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vu1l8owovzm50fa4zja9adlpa1shyzfdc1.png)
After graphing the points, we get
Parent function of function 1)
Parent function of function 2)
Now, translating the parent function in green two units to the right and 1 unit up, we obtain
In both images, the green curve is 1/2^(x)->parent function of (1/2)^(x-2)+1
the yellow curve is (1/2)^(x-2)+1
The red curve is 3^x->parent function of 2*3^x
and the blue curve is 2*3^x