Answer:
x = 1/3 (arccos (-7/15) + 2πn)
Step-by-step explanation:
For solving for x in
![3\cos \mleft(3x\mright)=-(7)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/gz8x0z8m26a0d5194cp1jqc439m419s1ob.png)
we first divide both sides by 3 to get
![\cos (3x)=-(7)/(3*5)](https://img.qammunity.org/2023/formulas/mathematics/college/5s7lf5hycpbvrp56mztxocxc2wvfpbaqjm.png)
![\cos (3x)=-(7)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/ufyiknjl8qibepersbn7rkwn4960huy7mj.png)
taking the arccos of both sides gives
![\arccos \lbrack\cos 3x\rbrack=\arccos (-(7)/(15))](https://img.qammunity.org/2023/formulas/mathematics/college/pgcf0f54hps3z2bxhm4crj3kbl0rakabpu.png)
![3x=\arccos (-(7)/(15))+2\pi n](https://img.qammunity.org/2023/formulas/mathematics/college/9gkka1b7zumsswftt1rnb6wll1m8e0yi6r.png)
finally, dividing both sides by 3 gives
![\boxed{x=(1)/(3)\lbrack\arccos (-(7)/(15))+2\pi n\rbrack}](https://img.qammunity.org/2023/formulas/mathematics/college/b9599ko1sedmrv9xzsla46ancu64ggah8g.png)
where n is an integer.
We can find the numerical answer for x by using a calculator to find the value of arccos(-7/15).