Solution
Step 1:
The first two points are the roots of the parabola.
To get the roots of the parabola, equate y = 0
![\begin{gathered} \text{y = x}^2\text{ + 2x - 35} \\ x^2\text{ + 2x - 35 = 0} \\ x^2\text{ + 7x - 5x - 35 = 0} \\ x(x\text{ + 7)-5(x + 7) = 0} \\ (x\text{ + 7)(x - 5) = 0} \\ x\text{ = -7 , x = 5} \\ \text{The parabola intercept x-axis at (-7, 0) and (5 , 0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vesipvxt9sjbqtwio4n67wjlyx067oaugd.png)
Step 2:
Find the y-intercept.
To find the y-intercept, plug x = 0
![\begin{gathered} \text{y = x}^2\text{ + 2x - 35} \\ y=0^2\text{ + 2}*0\text{ - 35} \\ y\text{ = -35} \\ y-\text{intercept is (0 , -35)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2fb4i2cvbcmovj12fyw0t2slgnd2lhyjin.png)
Step 3:
Find the vertex
![\begin{gathered} \text{The vertex is (}(-b)/(2a)\text{ , y)} \\ b\text{ = 2, a = 1} \\ x\text{ = }(-b)/(2a) \\ x\text{ = }(-2)/(2*1) \\ x\text{ = }(-2)/(2) \\ x\text{ = -1} \\ y=(-1)^2\text{ + 2(-1) - 35} \\ y\text{ = 1 - 2 - 35} \\ y\text{ = -36} \\ \text{Vertex = (-1, -36)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/phbv8zwq8qs79jwvdfydtao3w9jgz0v8su.png)
Final answer
All the five points are:
Roots (x-intercept) = (-7, 0) , (5 , 0)
y-intercept = (0, -35)
vertex = (-1, -36)
Other point = (-5, -20)