176k views
3 votes
Plot the given parabola on the axes. Plot the roots, the vertex and two other points.

Plot the given parabola on the axes. Plot the roots, the vertex and two other points-example-1
User Zec
by
5.7k points

1 Answer

0 votes

Solution

Step 1:

The first two points are the roots of the parabola.

To get the roots of the parabola, equate y = 0


\begin{gathered} \text{y = x}^2\text{ + 2x - 35} \\ x^2\text{ + 2x - 35 = 0} \\ x^2\text{ + 7x - 5x - 35 = 0} \\ x(x\text{ + 7)-5(x + 7) = 0} \\ (x\text{ + 7)(x - 5) = 0} \\ x\text{ = -7 , x = 5} \\ \text{The parabola intercept x-axis at (-7, 0) and (5 , 0)} \end{gathered}

Step 2:

Find the y-intercept.

To find the y-intercept, plug x = 0


\begin{gathered} \text{y = x}^2\text{ + 2x - 35} \\ y=0^2\text{ + 2}*0\text{ - 35} \\ y\text{ = -35} \\ y-\text{intercept is (0 , -35)} \end{gathered}

Step 3:

Find the vertex


\begin{gathered} \text{The vertex is (}(-b)/(2a)\text{ , y)} \\ b\text{ = 2, a = 1} \\ x\text{ = }(-b)/(2a) \\ x\text{ = }(-2)/(2*1) \\ x\text{ = }(-2)/(2) \\ x\text{ = -1} \\ y=(-1)^2\text{ + 2(-1) - 35} \\ y\text{ = 1 - 2 - 35} \\ y\text{ = -36} \\ \text{Vertex = (-1, -36)} \end{gathered}

Final answer

All the five points are:

Roots (x-intercept) = (-7, 0) , (5 , 0)

y-intercept = (0, -35)

vertex = (-1, -36)

Other point = (-5, -20)

Plot the given parabola on the axes. Plot the roots, the vertex and two other points-example-1
User Xeelley
by
5.5k points