Given:
The mass of the car is,
![m=1325\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/8uvjhaho3sx54w66mn8qckl3z5kmuji56e.png)
The radius of the circular path is,
![r=16.18\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/701um3ol34f4madbhm1a48d73evmy3gi27.png)
The coefficient of friction between the tires and the road is,
![\mu=0.826](https://img.qammunity.org/2023/formulas/physics/college/ci39x4u2al00cvxnrnmd5w5j2w7iw5zjs4.png)
The acceleration due to gravity is,
![g=10\text{ m/s}^2](https://img.qammunity.org/2023/formulas/physics/college/hc1qaye61l5hrliyt8urt6we2az4gq3y1f.png)
To find:
How fast (in m/s) can the car go without skidding off the turn
Step-by-step explanation:
The frictional force balances the centripetal force.
The frictional force is,
![f=\mu mg](https://img.qammunity.org/2023/formulas/physics/high-school/kw442qk90tv756ezgkm4frlcpl9874ww9a.png)
The centripetal force is,
![F=(mv^2)/(r)](https://img.qammunity.org/2023/formulas/physics/college/5ok2axeikntd82rxf4s17nike27avi0e84.png)
Here, v is the speed of the car without skidding.
We can write,
![\begin{gathered} (mv^2)/(r)=\mu mg \\ v=√(\mu gr) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8v56xe1ibunbf93o3dpm6x2ss9067gsq2i.png)
Substituting the values we get,
![\begin{gathered} v=√(0.826*10*16.18) \\ v=11.6\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nbmsxybt9ket5jkp3rzpwag6b1ovp3g1i6.png)
Hence, the required speed is 11.6 m/s.