Given:
The is supported by four strong chains which make an angle of
![\theta=73.9\degree](https://img.qammunity.org/2023/formulas/physics/college/v414atjtbjdl03y3zzjlu89we1ui271gj0.png)
The force on each chain is
![F=38.4\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/d983uj1maupc8zb16837wmnotuyntyozmp.png)
The acceleration due to gravity is
![g=10\text{ m/s}^2](https://img.qammunity.org/2023/formulas/physics/college/hc1qaye61l5hrliyt8urt6we2az4gq3y1f.png)
To find:
The mass of the light
Step-by-step explanation:
The horizontal force by each chain is given by,
![\begin{gathered} F_h=Fcos\theta \\ =38.4* cos73.9\degree \\ =10.6\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qidv4z5hb1hi28aqvcymjztaqrn3qzoxp8.png)
The vertical force by each chain is given by,
![\begin{gathered} F_v=Fsin\theta \\ =38.4* sin73.9\degree \\ =36.9\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w48libymjtc0i14nbat6eioxl1emvgzyie.png)
The weight of the light is balanced by the vertical force of the chains.
The weight of the light is,
![\begin{gathered} W=4F_v \\ =4*36.9 \\ =147.6\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ay6v3g56ev0d7gawek2ihpfsl9z0zy10ha.png)
The mass of the light is,
![\begin{gathered} m=(W)/(g) \\ =(147.6)/(10) \\ =14.76\text{ kg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2g2h1mj157ucx36qamg9tc1tyg5t7vuzwt.png)
Hence, the mass of the light is 14.76 kg.