Given a series, the ratio test implies finding the following limit:
![\lim _(n\to\infty)\lvert(a_(n+1))/(a_n)\rvert=r](https://img.qammunity.org/2023/formulas/mathematics/college/k0tyl21xju30a1e712jokkn69hdjhhr6cr.png)
If r<1 then the series converges, if r>1 the series diverges and if r=1 the test is inconclusive and we can't assure if the series converges or diverges. So let's see the terms in this limit:
![\begin{gathered} a_n=(2^n)/(n5^(n+1)) \\ a_(n+1)=(2^(n+1))/((n+1)5^(n+2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/snundo8f8e1thzje2atk4q0diew3eteb2w.png)
Then the limit is:
![\lim _(n\to\infty)\lvert(a_(n+1))/(a_n)\rvert=\lim _(n\to\infty)\lvert(n5^(n+1))/(2^n)\cdot(2^(n+1))/(\mleft(n+1\mright)5^(n+2))\rvert=\lim _(n\to\infty)\lvert(2^(n+1))/(2^n)\cdot(n)/(n+1)\cdot(5^(n+1))/(5^(n+2))\rvert](https://img.qammunity.org/2023/formulas/mathematics/college/i843yspl0h80et7nga3y07wasvqg8jml6u.png)
We can simplify the expressions inside the absolute value:
![\begin{gathered} \lim _(n\to\infty)\lvert(2^(n+1))/(2^n)\cdot(n)/(n+1)\cdot(5^(n+1))/(5^(n+2))\rvert=\lim _(n\to\infty)\lvert(2^n\cdot2)/(2^n)\cdot(n)/(n+1)\cdot(5^n\cdot5)/(5^n\cdot5\cdot5)\rvert \\ \lim _(n\to\infty)\lvert(2^n\cdot2)/(2^n)\cdot(n)/(n+1)\cdot(5^n\cdot5)/(5^n\cdot5\cdot5)\rvert=\lim _(n\to\infty)\lvert2\cdot(n)/(n+1)\cdot(1)/(5)\rvert \\ \lim _(n\to\infty)\lvert2\cdot(n)/(n+1)\cdot(1)/(5)\rvert=\lim _(n\to\infty)\lvert(2)/(5)\cdot(n)/(n+1)\rvert \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h20p48r62ugyfgvqmctha6fopaiqvoczt8.png)
Since none of the terms inside the absolute value can be negative we can write this with out it:
![\lim _(n\to\infty)\lvert(2)/(5)\cdot(n)/(n+1)\rvert=\lim _(n\to\infty)(2)/(5)\cdot(n)/(n+1)](https://img.qammunity.org/2023/formulas/mathematics/college/d3q6vtxty8gdfcp9gy3bn8rpgta6tjb4hw.png)
Now let's re-writte n/(n+1):
![(n)/(n+1)=(n)/(n\cdot(1+(1)/(n)))=(1)/(1+(1)/(n))](https://img.qammunity.org/2023/formulas/mathematics/college/kshd9gdj47nxbpggcqx3phgdlzbq6wjcd5.png)
Then the limit we have to find is:
![\lim _(n\to\infty)(2)/(5)\cdot(n)/(n+1)=\lim _(n\to\infty)(2)/(5)\cdot(1)/(1+(1)/(n))](https://img.qammunity.org/2023/formulas/mathematics/college/3nudkmhk3oblwyxtapxkblq6q9flaqiiqb.png)
Note that the limit of 1/n when n tends to infinite is 0 so we get:
![\lim _(n\to\infty)(2)/(5)\cdot(1)/(1+(1)/(n))=(2)/(5)\cdot(1)/(1+0)=(2)/(5)=0.4](https://img.qammunity.org/2023/formulas/mathematics/college/1fqqtbd8jjsmbjbk774ctpz49wei6x4yjs.png)
So from the test ratio r=0.4 and the series converges. Then the answer is the second option.