178k views
4 votes
I need help with this problem from the calculus portion on my ACT prep guide

I need help with this problem from the calculus portion on my ACT prep guide-example-1
User D Krueger
by
8.2k points

1 Answer

4 votes

Given a series, the ratio test implies finding the following limit:


\lim _(n\to\infty)\lvert(a_(n+1))/(a_n)\rvert=r

If r<1 then the series converges, if r>1 the series diverges and if r=1 the test is inconclusive and we can't assure if the series converges or diverges. So let's see the terms in this limit:


\begin{gathered} a_n=(2^n)/(n5^(n+1)) \\ a_(n+1)=(2^(n+1))/((n+1)5^(n+2)) \end{gathered}

Then the limit is:


\lim _(n\to\infty)\lvert(a_(n+1))/(a_n)\rvert=\lim _(n\to\infty)\lvert(n5^(n+1))/(2^n)\cdot(2^(n+1))/(\mleft(n+1\mright)5^(n+2))\rvert=\lim _(n\to\infty)\lvert(2^(n+1))/(2^n)\cdot(n)/(n+1)\cdot(5^(n+1))/(5^(n+2))\rvert

We can simplify the expressions inside the absolute value:


\begin{gathered} \lim _(n\to\infty)\lvert(2^(n+1))/(2^n)\cdot(n)/(n+1)\cdot(5^(n+1))/(5^(n+2))\rvert=\lim _(n\to\infty)\lvert(2^n\cdot2)/(2^n)\cdot(n)/(n+1)\cdot(5^n\cdot5)/(5^n\cdot5\cdot5)\rvert \\ \lim _(n\to\infty)\lvert(2^n\cdot2)/(2^n)\cdot(n)/(n+1)\cdot(5^n\cdot5)/(5^n\cdot5\cdot5)\rvert=\lim _(n\to\infty)\lvert2\cdot(n)/(n+1)\cdot(1)/(5)\rvert \\ \lim _(n\to\infty)\lvert2\cdot(n)/(n+1)\cdot(1)/(5)\rvert=\lim _(n\to\infty)\lvert(2)/(5)\cdot(n)/(n+1)\rvert \end{gathered}

Since none of the terms inside the absolute value can be negative we can write this with out it:


\lim _(n\to\infty)\lvert(2)/(5)\cdot(n)/(n+1)\rvert=\lim _(n\to\infty)(2)/(5)\cdot(n)/(n+1)

Now let's re-writte n/(n+1):


(n)/(n+1)=(n)/(n\cdot(1+(1)/(n)))=(1)/(1+(1)/(n))

Then the limit we have to find is:


\lim _(n\to\infty)(2)/(5)\cdot(n)/(n+1)=\lim _(n\to\infty)(2)/(5)\cdot(1)/(1+(1)/(n))

Note that the limit of 1/n when n tends to infinite is 0 so we get:


\lim _(n\to\infty)(2)/(5)\cdot(1)/(1+(1)/(n))=(2)/(5)\cdot(1)/(1+0)=(2)/(5)=0.4

So from the test ratio r=0.4 and the series converges. Then the answer is the second option.

User Mabergerx
by
8.8k points

Related questions

asked Mar 3, 2023 19.4k views
Chepyle asked Mar 3, 2023
by Chepyle
8.6k points
1 answer
3 votes
19.4k views
1 answer
5 votes
70.8k views
1 answer
1 vote
96.9k views