Given:
![a_1=58,\text{ }a_n=-7,\text{ and }n=26](https://img.qammunity.org/2023/formulas/mathematics/college/c5gw241i0pxx0ypdxw9oci4csy73pwuh4h.png)
Required:
We have to find the arithmetic series.
Step-by-step explanation:
From the given data if we can find the common difference denoted by d then we can easily find the required arithmetic series.
We use the formula
![a_n=a_1+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/8ad7drcg9vuq9sminhqfaw7j3r5r4u1ij9.png)
Now we put the given values in the above equation to find the value of d.
![\begin{gathered} -7=58+(26-1)d \\ \Rightarrow-7-58=25d \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2crbjn03xeg12pzovu32xipbvb3bs7higy.png)
![\begin{gathered} \Rightarrow25d=-65 \\ \\ \Rightarrow d=-(65)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/59u1lufawbf5k7k53emd4mp5cxvob0f0xq.png)
![\Rightarrow d=-2.6](https://img.qammunity.org/2023/formulas/mathematics/college/rkusay8vt36ypbh88xmp7u1rt89ce7iw2y.png)
Then the required arithmetic series is
![a_1,a_1+d,a_1+2d,a_1+3d,.\text{ }.\text{ }.\text{ },a_1+25d](https://img.qammunity.org/2023/formulas/mathematics/college/n9mjjd1j1lu564iw6v940t8jj5kmhixgnz.png)
![\begin{gathered} =58,\text{ }58-2.6,\text{ }58-5.2,\text{ }58-7.8,\text{ }.\text{ }.\text{ }.,\text{ }58-65 \\ =58,\text{ }55.4,\text{ }52.8,\text{ }50.2,\text{ }.\text{ }.\text{ }.\text{ },-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pkpptlyqa2wgqjhw3qycpkxwu9k30v008s.png)
The formula for finding the sum of the arithmetic series is
![S_n=(n)/(2)(a_1+a_n)](https://img.qammunity.org/2023/formulas/mathematics/college/l34sdkbt2duk3wd7n1oiycdrw18fbr7kew.png)
Then the sum of the above series is
![(26)/(2)(58-7)=13*51=663](https://img.qammunity.org/2023/formulas/mathematics/college/t0xk0b4otw4v9hhvbfmjjspewmsnwvrord.png)
Final answer:
Hence the arithmetic series is
![\begin{equation*} 58,\text{ }55.4,\text{ }52.8,\text{ }50.2,\text{ }.\text{ }.\text{ }.\text{ },-7 \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/f90u1ss3dlb20cqfaso8vodh3imz4bu7u0.png)
And the sum of the series is
![663](https://img.qammunity.org/2023/formulas/mathematics/college/ks2y1tgsnvearaoufqgukbtfquub15w1as.png)