![y=Asin\left(B\theta\right)](https://img.qammunity.org/2023/formulas/mathematics/college/lstiv4ml6rm2cga59hz5ryffcvxf4580pb.png)
In the function above:
A is the amplitude
2π/B is the period
You equal to 0 the function and solve θ to find the points of intersection with the x-axis.
For the given function:
![y=(1)/(2)sin\left(3\theta\right)](https://img.qammunity.org/2023/formulas/mathematics/college/xwyrrhu836lz4rhv52xjibdr2stdu38z84.png)
Amplitude:
![A=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/1m13i5txns7brgk8cdlnf0u0plve5qr7qq.png)
Period:
![P=(2\pi)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/5woj0dvvrxvbczde107e1n2btvqig45xot.png)
Points of intersection with the x-axis:
![\begin{gathered} (1)/(2)sin\left(3\theta\right)=0 \\ \\ Multiply\text{ both sides of the equatio by 2:} \\ 2*(1)/(2)sin\left(3\theta\right)=2*0 \\ \\ sin\left(3\theta\right)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7s0vkcxklgeane8o1nesukukfsszeze875.png)
Using the unit circle you get that the angles with sine equal to 0 are: 0 and π.
![\begin{gathered} 3\theta=0 \\ 3\theta=\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ncqdz3plbncgtni8956icvwgnkgbp035t6.png)
Solve θ:
![\begin{gathered} \theta=0 \\ \\ \theta=(\pi)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cd6z4hm3yink1rz4span2vprb06enjri9a.png)
Add the period to each solution multiplied by k of θ to find all the intersections:
![\begin{gathered} \theta=0+(2k\pi)/(3) \\ \\ \theta=(\pi)/(3)+(2k\pi)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qp2ohn9l2ba3yzhl2nxf5eg2xl9qj9hhpv.png)
Combine the solutions:
![\theta=(k\pi)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/wumfshkinh0h7wntojg94meiljzhhkm95p.png)
Then, the given function has Amplitude 1/2; period 2π/3, and points of intersection kπ/3 (k is a whole number)