Given
Initial velocity:
36 ft/s
Initial height:
0 ft
Vertical motion model:
h(t) = -16t^2 + ut + s
v = initial velocity
s = is the height
Procedure
We are going to use the model provided for the vertical motion.
![\begin{gathered} h(t)=-16t^2+36t+0 \\ h(t)=-16t^2+36t \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/18tlzf4p8vb1vpxjy1niqcrdkrssqt7f6e.png)
We know that at the maximum height the final velocity is 0.
Then we will use the following expression to calculate the maximum height:
![\begin{gathered} v^2_f=v^2_o-2ah_(\max ) \\ 0=v^2_o-2ah_(\max ) \\ 2ah_(\max )=v^2_o \\ h_(\max )=(v^2_o)/(2a) \\ h_(\max )=((36ft/s)^2)/(2\cdot32ft/s^2) \\ h_(\max )=20.25\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ambzrj95oluzho0aqtsb9nn5awxspnx64w.png)
Now for time:
![\begin{gathered} 20.25=-16t^2+36t \\ 16t^2-36t+20.25=0 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/5xi3h1g8fqv5b6lo1g9wblvt9hk3ttus04.png)
Solving for t,
![\begin{gathered} t_1=2.25 \\ t_2=0 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/mzco6vfkyntc2nsynuzh3cwj28065f6k5j.png)
The total time the kangaroo takes in the air is 2.3s.