1.
Original function
![f(x)=|x|](https://img.qammunity.org/2023/formulas/mathematics/college/wua4w9ki9cqsum5s1jxpp69bhfq7ik7xp3.png)
Left 3 units. Horizontal move is applied directly to the variable
![|x+3|](https://img.qammunity.org/2023/formulas/mathematics/high-school/p6arau5somlycdwgqzok01oejasvbzdzv5.png)
Up 2 units. Vertical move is applied to whole function
![|x+3|+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/2iw15tw0povbctugcu9dtrasgedmsy34o1.png)
reflect obout the y-axis, we change the sign of the variable, then
![f(x)=|-x+3|+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/5y9fmye27t583mcbxct6lt4d9dcws7tojv.png)
then right option is B
2.
![y=f(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r57b3nkp7fsnalgkp0b1qs49lb87f423y2.png)
then -f(x) is -y
![-y=-f(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gya5j44pp7i7wcz2boiz34agenec04a9nl.png)
then change the value of -y
So the point must be on the graph of -f(x) is
![(3,-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xoth0xawu6yh8zityamp365ervmzjgwhdp.png)
Then right option is D