Step-by-step explanation:
We are given a triangle with the vertices as shown below;
![\begin{gathered} J=(-3,5) \\ K=(-1,0) \\ L=(8,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xmxfv24i22du3dmjpok1n9xch99g10kza7.png)
To translate along the vector,
![<-4,7>](https://img.qammunity.org/2023/formulas/mathematics/college/ocato0pzdiekzxzdfxn3szzytt9hi4tfoe.png)
We shall apply the following rule;
![(x,y)\Rightarrow(x-4,y+7)](https://img.qammunity.org/2023/formulas/mathematics/college/pb96hcv379zhxhz62wytgnme1z8mhf1pm5.png)
Therefore, for the points given, a translation along the vector (-4, 7) would be;
![\begin{gathered} J(-3,5)\Rightarrow(-3-4,5+7) \\ J^(\prime)=(-7,12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oyerurmxj641f2a8orbrfec2p0wpg9v598.png)
![\begin{gathered} K(-1,0)\Rightarrow(-1-4,0+7) \\ K^(\prime)=(-5,7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rwc0y3e1qlkr0pmc7m3g5lyxfe0xsggy1d.png)
![\begin{gathered} L(8,-4)\Rightarrow(8-4,-4+7) \\ L^(\prime)=(4,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hncs4asbpeahqsunhk0gnn33dk0h92rvjc.png)
Now we have the new points as;
![\begin{gathered} J^(\prime)(-7,12) \\ K^(\prime)(-5,7) \\ L^(\prime)(4,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ty3awrrz5rcvcbn4k6clmu7tgxqsx4r8ja.png)
Next we shall reflect this shape across the x-axis.The rule for reflecting across the x-axis is given as;
![(x,y)\Rightarrow(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/momd9tfmosfazmpp5qbkpvva58nofodiqe.png)
Imagine folding the graph page across the horizontal line (x-axis). That way, the x coordinate would still remain but the y coordinate would flip over from top to bottom or bottom to top.
Therefore, with the new coordinates we've determined, a reflection across the x-axis would become;
![\begin{gathered} J^(\prime)(-7,12)\Rightarrow(-7,-12) \\ J^(\doubleprime)(-7,-12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eva8pcris9pzs28mxsrahye6veanjvxilc.png)
![\begin{gathered} K^(\prime)(-5,7)\Rightarrow(-5,-7) \\ K^(\doubleprime)(-5,-7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ga0jsytfy456mqpqcb38mrfzkwqbhwh515.png)
![\begin{gathered} L^(\prime)(4,3)\Rightarrow(4,-3) \\ L^(\doubleprime)(4,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b3qrp4s4ivk7dg0l16p3u6yjv9nw7fs5wh.png)
The new coordinates after the translation and the reflection would now be;
ANSWER:
![\begin{gathered} J(-3,5)\rightarrow J^(\prime)(-7,12)\rightarrow J^(\doubleprime)(-7,-12) \\ K(-1,0)\rightarrow K^(\prime)(-5,7)\rightarrow K^(\doubleprime)(-5,-7) \\ L(8,-4)\rightarrow L^(\prime)(4,3)\rightarrow L^(\doubleprime)(4,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jziqlcjmru9kw8stgn1o7dt5vrlz7niqf0.png)