We can decomposite the parallelogram into two right triangles and one rectangle. To find the total area we have to calculate the area of each figure and add them.
• Area of the right triangles (At):
![A_t=2\cdot(x* h)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/gr9fqja7uapat5iil7rj6dmd22d9kgqa54.png)
where the first number 2 represents the two triangles, x represents the base of the triangles and h the height. Solving for At:
![A_t=x* h=5*8=40units^2](https://img.qammunity.org/2023/formulas/mathematics/college/sxs42t8af7r10kcu44xx9oexsouomc6s0s.png)
• Area of rectangle (Ar):
![A_r=y* h](https://img.qammunity.org/2023/formulas/mathematics/college/gqg4r6v9wv6rxw9byi1gf69ipyh9jkqpi8.png)
where y represents the base of the rectangle and h represents the height of the rectangle. Solving for Ar:
![A_r=15*8=120units^2](https://img.qammunity.org/2023/formulas/mathematics/college/ojjwufj2wma6lutb7nznig5pvjsrbrzmjw.png)
Finally, finding the area of the parallelogram (Ap):
![A_p=A_t+A_r=40+120=160units^2](https://img.qammunity.org/2023/formulas/mathematics/college/lripolfeyyfrhtlbvcs7r7jnvbxl7cd41x.png)
Answer: 160 units²