Answer:
• (g-f)(-5)=16
,
• (g.f)(-1)=-16
,
• (f/g)(-3)=-1
Explanation:
Given the graph of f(x) and g(x):
Part 2
• When x=-5, f(x)=-8.
,
• When x=-5, g(x)=8
Thus:
![\begin{gathered} f(-5)=-8 \\ g(-5)=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kl4poi7cauayypcrp4hc0zfxlrmhmkwiui.png)
The composition of the functions:
![\begin{gathered} (g-f)(-5)=g(-5)-f(-5) \\ =8-(-8) \\ =8+8 \\ \implies(g-f)(-5)=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/le3rvk62tzbqnlo54yq8mxgr5breitl5zh.png)
The answer is 16.
Part 3
• When x=1, f(x)=4.
,
• When x=1, g(x)=-4
Therefore:
![\begin{gathered} f(1)=4 \\ g(1)=-4 \\ \implies(g\cdot f)(-1)=(g)(-1)\cdot(f)(-1) \\ =-4*4 \\ =-16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/buxzdx4v5h4w1ig6ih3ee00yej82hzlatx.png)
The answer is -16.
Part 4
• When x=-3, f(x)=-4.
,
• When x=-3, g(x)=4
Therefore:
![\begin{gathered} f(-3)=-4 \\ g(-3)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wzoasagrpau3vts8o5c6bd0u42ku5p57j0.png)
The composition is calculated below:
![((f)/(g))(-3)=(f(-3))/(g(-3))=-(4)/(4)=-1](https://img.qammunity.org/2023/formulas/mathematics/college/mmez4y6cpzyfysdb53gmqotidpnczri1v0.png)
The answer is -1.