Given
J(2, -7) ; K(-6, -2) ; L(-1, 6) ; M(7, 1 )
Find
Length of KL and length of side adjacent to KL
Step-by-step explanation
by distance formula we find the length of sides.
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ryn3fzehb0ozllfgi4eom8sc1fxhgg6wgd.png)
so ,
![\begin{gathered} JK=√((-6-2)^2+(-2+7)^2)=√(64+25)=√(89) \\ KL=√((-1+6)^2+(6+2)^2)=√(25+64)=√(89) \\ LM=√((7+1)^2+(1-6)^2)=√(25+64)=√(89) \\ MJ=√((7-2)^2+(1+7)^2)=√(25+64)=√(89) \\ JL=√((-1-2)^2+(6+7)^2)=√(9+169)=√(178) \\ KM=√((7+6)^2+(1+2)^2)=√(169+9)=√(178) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zsdttvex59n74jmj7o96se0y5vn4ypmhl3.png)
here all sides are equal and diagonal are equal , so it is a square .
a) Length of KL and length of side adjacent to KL is
![√(89)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s14c3n0l5px40vevqla7so8rqaaty2md0r.png)
slope of KL is given by
![\begin{gathered} (y_2-y_1)/(x_2-x_1) \\ \\ (6+2)/(-1+6) \\ (8)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ircj1ndxq3z2q219f00hu0w4sryrquc9io.png)
slope of side adjacent to KL is given by
![\begin{gathered} (1-6)/(7+1) \\ -(5)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yu1bsm8nulmkq3nm7amabxh857b451d72h.png)
Final Answer
a) Length of KL and side adjacent to KL is
![√(89)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s14c3n0l5px40vevqla7so8rqaaty2md0r.png)
b) Slope of KL = 8/5
slope of side adjacent to KL is -5/8
c) it is a sqaure.