We are asked to determine a set of parametric equations for the parabolic motion of an object. The parametric equations for such a motion is given by:
![\begin{gathered} x=v\cdot\cos 43\degree t,(1) \\ y=-16t^2+v\cdot\sin 43\degree t+6,(2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/10fdoi3gcqdb7fzza33hwd06oa3emzumnl.png)
To determine the velocity we will solve for "t" in equation (1):
![t=(x)/(v\cos 43)](https://img.qammunity.org/2023/formulas/physics/high-school/m55sta5dtwuaeujuym3exzs4drdse1pomu.png)
Now, we will replace this in equation (2):
![y=-16((x)/(v\cos43))^2+v\cdot\sin 43\degree((x)/(v\cos43))+6](https://img.qammunity.org/2023/formulas/physics/high-school/bd5aj1piipzwz2372qk7jmb51a3lxhvfow.png)
Simplifying:
![y=-(16x^2)/(v^2\cos^243)+x\tan 43+6](https://img.qammunity.org/2023/formulas/physics/high-school/4e4pc2ofbjfpuwn3mg9ww381j0ktc42n4k.png)
Now we replace the values x = 54.5 and y = 0:
![0=-(16(54.5)^2)/(v^2\cos^243)+(54.5)\tan 43+6](https://img.qammunity.org/2023/formulas/physics/high-school/fy19ndpm7w0v6rsiac4weo9fjef0glkq9l.png)
Simplifying:
![0=-(88850.1)/(v^2)+56.82](https://img.qammunity.org/2023/formulas/physics/high-school/wikj6k5iof2ux38swow70y0s3mf9awbx93.png)
Now we solve for "v":
![(88850.1)/(v^2)=56.82](https://img.qammunity.org/2023/formulas/physics/high-school/c4cbrdz67w4vjf6btfeaqii8ou62hk3xtc.png)
![88850.1=56.82v^2](https://img.qammunity.org/2023/formulas/physics/high-school/qa64fxq0loyvqc5l8elyj9a8a8pkhtkrff.png)
![(88850.1)/(56.82)=v^2](https://img.qammunity.org/2023/formulas/physics/high-school/xbsv8uv953f9lxvq2cf8qw2dyck92x89ch.png)
Solving the operation:
![1563.71=v^2](https://img.qammunity.org/2023/formulas/physics/high-school/9cg7mbwf12tuc0rvswqzxncr9hjjnn7xh3.png)
taking the square root:
![\begin{gathered} \sqrt[]{1563.71}=v \\ 39.54=v \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/mhqs5p6r9x8h6ltdd9o13zfk5iy8rxlw9l.png)
Therefore, the velocity is 39.54 ft/s.