We are asked to determine a linear model that relates the time and height of a person.
Let "x" be the time since birth and "y" the height, then we are given the following points:
![\begin{gathered} (x_1,y_1)=(0,24in) \\ (x_2,y_2)=(10,4\text{feet)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/45n3h3ixipxqs7i64j22bw417uc5jb4m4y.png)
Now, we convert the inches to feet using the following conversion factor:
![1\text{feet}=12in](https://img.qammunity.org/2023/formulas/physics/college/a1l4xu082csnd6wnb4y516gsmdrgvp0nt7.png)
Now, we multiply by the conversion factor:
![24in*\frac{1\text{feet}}{12in}=2feet](https://img.qammunity.org/2023/formulas/physics/college/rr7jfntk8bth3owbm5p6163ah5qci5t00l.png)
Therefore, the points are:
![\begin{gathered} (x_1,y_1)=(0,2feet) \\ (x_2,y_2)=(10,4\text{feet)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/zxlncarv8acwpsuog03lr3auht1e4a9zy6.png)
Now, we determine the slope of the line using the following formula:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Substituting the values we get:
![m=(4-2)/(10-0)=(2)/(10)=(1)/(5)](https://img.qammunity.org/2023/formulas/physics/college/2m5qxagr01hy1m8yl857cd50qj6ig3f0dl.png)
Now, we use the general form of a line equation in slope-intercept form:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Where "m" is the slope and "b" is the y-intercept. Now, we substitute the value of the slope:
![y=(1)/(5)x+b](https://img.qammunity.org/2023/formulas/physics/college/yeea5gmu9b1fwtff99ob786amw5x2r7t1q.png)
To determine the value of "b" we will substitute the first point:
![2=(1)/(5)(0)+b](https://img.qammunity.org/2023/formulas/physics/college/z56qsa9317naajhx7nhqt59intznq734mp.png)
Solving the operations:
![2=b](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2jq02s2uzrlbzq443nyw9h224u35sqkxa.png)
Therefore, the value of "b" is 2:
![y=(1)/(5)x+2](https://img.qammunity.org/2023/formulas/physics/college/8mq2migzamadb7dawb5uvzy3ha56vlpfrf.png)
Now, we substitute the value "x= 9", we get:
![\begin{gathered} y=(1)/(5)(9)+2 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fwa5hwiqc80lka3uvvuc2mqyf4hkb4viwp.png)
Solving the operations:
![y=3.8](https://img.qammunity.org/2023/formulas/physics/college/ex94z31xn97fbcww34u0n4dk4pypl9u50r.png)
Therefore, the height at age 9 is 3.8 feet.