153k views
3 votes
Determine the unit vector in the direction of <-2, 9>.

1 Answer

3 votes

Recall that the unit vector in the direction of a vector v≠<0,0> is:


\vec{u}=(v)/(||v||).

Notice that:


||<-2,9>||=√((-2)^2+9^2).

Simplifying the above result we get:


||<-2,9>||=√(4+81)=√(85).

Therefore the unite vector in the direction of <-2,9> is:


(<-2,9>)/(√(85))=<-(2)/(√(85)),(9)/(√(85))>.

Answer:


\begin{equation*} <-(2)/(√(85)),(9)/(√(85))> \end{equation*}

User Adrian Ciolea
by
3.8k points