The equation of the line is given as
![3x+4y=7](https://img.qammunity.org/2023/formulas/mathematics/college/g93q8xh0vhf8bit5vwcpsoylpemqyuqg93.png)
The general equation of a line is
![\begin{gathered} y=mx+c \\ \text{where,} \\ m=\text{slope} \\ c=\text{intercept on the y a}\xi s \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l7cqcccfmbhd0aplqx3u3989g36xn6v8fr.png)
Step 1: Make y the subject of the formula
![3x+4y=7](https://img.qammunity.org/2023/formulas/mathematics/college/g93q8xh0vhf8bit5vwcpsoylpemqyuqg93.png)
Subtract 3x from both sides
![\begin{gathered} 3x+4y=7 \\ 3x-3x+4y=7-3x \\ 4y=-3x+7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/da4ov51izzni89z821iyvnfz85kwruiq74.png)
Step 2: Divide all through by 4
![\begin{gathered} 4y=-3x+7 \\ (4y)/(4)=-(3x)/(4)+(7)/(4) \\ y=-(3x)/(4)+(7)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ruqjtn7rmq7ocvrdcvaparjgm8pc75vsup.png)
Step 3 : Compare coefficients with the general equation of a line below
![\begin{gathered} y=mx+c \\ y=-(3x)/(4)+(7)/(4) \\ \text{hence,} \\ m=-(3)/(4),c=(7)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5gp4ytwjyd42jak1vf1z30jauw19pevxs6.png)
For a perpendicular line,
![m_1* m_2=-1](https://img.qammunity.org/2023/formulas/mathematics/college/drvgj3vmsiwqhbbe0hcgk6m0betp6bgxci.png)
That is, we will have that
![\begin{gathered} -(3)/(4)* m_2=-1 \\ -(3m_2)/(4)=-1 \\ \text{cross multiply.} \\ -3m_2=-4 \\ \text{divide both sides by -3} \\ (-3m_2)/(-3)=(-4)/(-3) \\ m_2=(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yw63z9l9gfvnzxd0512iq2orjooq41xb0s.png)
Hence,
The slope of the perpendicular line will be = 4/3
For a parallel line,
![m_1=m_2](https://img.qammunity.org/2023/formulas/mathematics/college/bb136i6nrncquza4si9ea0meh8h3qjcl3x.png)
Therefore,
The slope of a parallel line will be = -3/4