We have:
[f(x + h) - f(x)]/h
Where h ≠ 0, and the function f is:
f(x) = √(x - 15)
Now, we can calculate f(x + h):
f(x + h) = √((x + h) - 15) = √(x + h - 15)
Then:
DQ = [f(x + h) - f(x)]/h = [√(x + h - 15) - √(x - 15)]/h
To rationalize the numerator, we multiply and divide the right side by
[√(x + h - 15) + √(x - 15)], because we know that:
(a + b) * (a - b) = a² - b²
Here:
a = √(x + h - 15)
b = √(x - 15)
Then:
[√(x + h - 15) - √(x - 15)]*[√(x + h - 15) + √(x - 15)] = x + h - 15 - x + 15 = h ...(1)
In DQ:
DQ = [√(x + h - 15) - √(x - 15)]/h*([√(x + h - 15) + √(x - 15)]/[√(x+h-15) + √(x - 15)])
*As it is shown below*
Using (1):
DQ = h/(h*[√(x + h - 15) + √(x - 15)])
Canceling the h term:
DQ = 1/([√(x + h - 15) + √(x - 15)])