51.6k views
2 votes
The length of a rectangle is twice the width. If the perimeter is 282, find both dimensions.

1 Answer

3 votes

Answer:

The value of the length and width is;


\begin{gathered} \text{length }l=94\text{ units} \\ \text{width }w=47\text{ units} \end{gathered}

Step-by-step explanation:

Let l and w represent the length and width of the rectangle.

Given that;

The length of a rectangle is twice the width


l=2w\text{ ------1}

the perimeter is 282.

the formula for perimeter of a rectangle is;


\begin{gathered} P=2l+2w \\ \sin ce; \\ P=282 \\ 2l+2w=282\text{ -----------2} \end{gathered}

Let us substitute equation 1 to 2;


\begin{gathered} 2l+2w=282\text{ } \\ 2(2w)+2w=282\text{ } \\ 4w+2w=282 \\ 6w=282 \\ w=(282)/(6) \\ w=47\text{ units} \end{gathered}

We can now substitute the value of w into equation 1 to get the length l;


\begin{gathered} l=2w \\ l=2(47) \\ l=94\text{ units} \end{gathered}

Therefore, the value of the length and width is;


\begin{gathered} \text{length }l=94\text{ units} \\ \text{width }w=47\text{ units} \end{gathered}
User Pragnesh Patel
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories