51.6k views
2 votes
The length of a rectangle is twice the width. If the perimeter is 282, find both dimensions.

1 Answer

3 votes

Answer:

The value of the length and width is;


\begin{gathered} \text{length }l=94\text{ units} \\ \text{width }w=47\text{ units} \end{gathered}

Step-by-step explanation:

Let l and w represent the length and width of the rectangle.

Given that;

The length of a rectangle is twice the width


l=2w\text{ ------1}

the perimeter is 282.

the formula for perimeter of a rectangle is;


\begin{gathered} P=2l+2w \\ \sin ce; \\ P=282 \\ 2l+2w=282\text{ -----------2} \end{gathered}

Let us substitute equation 1 to 2;


\begin{gathered} 2l+2w=282\text{ } \\ 2(2w)+2w=282\text{ } \\ 4w+2w=282 \\ 6w=282 \\ w=(282)/(6) \\ w=47\text{ units} \end{gathered}

We can now substitute the value of w into equation 1 to get the length l;


\begin{gathered} l=2w \\ l=2(47) \\ l=94\text{ units} \end{gathered}

Therefore, the value of the length and width is;


\begin{gathered} \text{length }l=94\text{ units} \\ \text{width }w=47\text{ units} \end{gathered}
User Pragnesh Patel
by
3.5k points