Given:
There are given the equation:
![N=100e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/ae3571lxxu4u0vdv8ckfwwzp3swf2a0y6n.png)
Step-by-step explanation:
From the given exponential function, N represents the number of bacteria and t represents the time.
Then,
According to the question, the value of N is 400 and the value of t is 5.
So,
Put the value of N and t into the above expression to find the value of k.
Then,
![\begin{gathered} N=100e^(kt) \\ 400=100e^(k(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xxgltvz8509aptk97ew6ym7huxe3pyme8a.png)
Then,
![\begin{gathered} 400=100e^(k(5)) \\ (400)/(100)=(100e^(5k))/(100) \\ 4=e^(5k) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6hixmo45fd6jr01jzs0dhw6j714ak9yib3.png)
Then,
![\begin{gathered} 4=e^(5k) \\ 5k=ln(4) \\ k=(ln(4))/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l5uopr88vjaft28gvvdizag5d3o24agohq.png)
So,
The value of k is shown below:
![k=(ln(4))/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/y91gy045iv4o9l50kfoahug0gp8vsiycoz.png)
Final answer:
Hence, the correct option is D.