89.9k views
4 votes
Find the equation of the line tangent to the function at the given point. y=x^3-2x^2+4 at (1,3)

User MDragon
by
8.8k points

1 Answer

7 votes

ANSWER

The equation of the line tangent to the function at the given point is:


y\text{ = -x + 4}

Explanation

The given equation is:


y=x^3-2x^2\text{ + 4 }\ldots\ldots\ldots\ldots\ldots..\text{ (1)}

Step 1: Determine the 1st derivative of the equation


\begin{gathered} y=x^3-2x^2\text{ + 4} \\ \frac{d\text{ y}}{d\text{ x}}=y^{^(\prime)}=3x^(3-1)\text{ - 2}\cdot2x^(2-1)\text{ + }0 \\ y^{^(\prime)}=3x^2\text{ - 4x }\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots..\text{ (2)} \end{gathered}

Step 2: To determine the slope (m) of the tangent line, insert the x-value (1) into the equation 2


\begin{gathered} y^{^(\prime)}=3x^2\text{ - 4x} \\ y^{^(\prime)}=3(1)^2^{}\text{ - 4}(1) \\ y^{^(\prime)}=\text{ 3 - 4} \\ y^{^(\prime)}=\text{ - 1} \end{gathered}

Step 3: use the point-slope formula to determine the equation of the line tangent to the given function at x = 1


\begin{gathered} y\text{ - }y_1=m(x-x_1) \\ y\text{ - 3 = -1(x - 1)} \\ y\text{ - 3 = -x + 1} \\ y\text{ = -x + 1 + 3} \\ y\text{ = -x + 4 } \\ \end{gathered}

Hence, The equation of the line tangent to the function at the given point is:


y\text{ = -x + 4 }

=======================================================================


y=(-3x+6)^{(1)/(2)}

1. Take 1st derivative


\frac{d\text{ y}}{d\text{ x }}=y^{^(\prime)}\text{ = }(1)/(2)(-3)(-3x+6)^{-(1)/(2)}
y^{^(\prime)}\text{ = -}(3)/(2)(-3x+6)^{-(1)/(2)}

2. insert the x-value (-1) to determine the slope (m)


\begin{gathered} y^{^(\prime)}\text{ = -}(3)/(2)(-3(-1)+6)^{-(1)/(2)} \\ y^{^(\prime)}\text{ = -}(3)/(2)(9)^{-(1)/(2)} \\ y^{^(\prime)}\text{ = -}(3)/(2)(\frac{1}{\sqrt[]{9}}) \\ y^{^(\prime)}\text{ = -}(3)/(2)\text{ }\cdot\text{ }(1)/(3) \\ y^{^(\prime)}\text{ = -}(1)/(2) \end{gathered}

3. Now, determine the equation of the line tangent at (-1,3)


\begin{gathered} y-y_1=m(x-x_1) \\ y\text{ - 3 = -}(1)/(2)(x\text{ + 1)} \\ y\text{ = -}(x)/(2)\text{ - }(1)/(2)\text{ + 3} \\ y\text{ = -}(x)/(2)\text{ + }(5)/(2) \end{gathered}

User Grace Huang
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories