ANSWER
The equation of the line tangent to the function at the given point is:
![y\text{ = -x + 4}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6737cwvp82cx6hxlh7w661hi2d8pa49495.png)
Explanation
The given equation is:
![y=x^3-2x^2\text{ + 4 }\ldots\ldots\ldots\ldots\ldots..\text{ (1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c92stquf93h61zptagcybefbionix3sioe.png)
Step 1: Determine the 1st derivative of the equation
![\begin{gathered} y=x^3-2x^2\text{ + 4} \\ \frac{d\text{ y}}{d\text{ x}}=y^{^(\prime)}=3x^(3-1)\text{ - 2}\cdot2x^(2-1)\text{ + }0 \\ y^{^(\prime)}=3x^2\text{ - 4x }\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots..\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bhtmwn4wmrevbucm9i9zubode7a67pi6mg.png)
Step 2: To determine the slope (m) of the tangent line, insert the x-value (1) into the equation 2
![\begin{gathered} y^{^(\prime)}=3x^2\text{ - 4x} \\ y^{^(\prime)}=3(1)^2^{}\text{ - 4}(1) \\ y^{^(\prime)}=\text{ 3 - 4} \\ y^{^(\prime)}=\text{ - 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a1gfaecnmbg8nwep8kseyc0n7uqp364rbe.png)
Step 3: use the point-slope formula to determine the equation of the line tangent to the given function at x = 1
![\begin{gathered} y\text{ - }y_1=m(x-x_1) \\ y\text{ - 3 = -1(x - 1)} \\ y\text{ - 3 = -x + 1} \\ y\text{ = -x + 1 + 3} \\ y\text{ = -x + 4 } \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zqg7o6ar8mmu23tebyws1jg1sff7jyh9ip.png)
Hence, The equation of the line tangent to the function at the given point is:
![y\text{ = -x + 4 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/kirm41jjj13m9lukfjqh6ylej8i3ytexxb.png)
=======================================================================
![y=(-3x+6)^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2hubh9f67z5703p3n5aba3499picl38564.png)
1. Take 1st derivative
![\frac{d\text{ y}}{d\text{ x }}=y^{^(\prime)}\text{ = }(1)/(2)(-3)(-3x+6)^{-(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cawo88o9uzxnch04264jpkozixc8b5uviw.png)
![y^{^(\prime)}\text{ = -}(3)/(2)(-3x+6)^{-(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qom6mx0unp7k83kx3pqhggvjilk669dksq.png)
2. insert the x-value (-1) to determine the slope (m)
![\begin{gathered} y^{^(\prime)}\text{ = -}(3)/(2)(-3(-1)+6)^{-(1)/(2)} \\ y^{^(\prime)}\text{ = -}(3)/(2)(9)^{-(1)/(2)} \\ y^{^(\prime)}\text{ = -}(3)/(2)(\frac{1}{\sqrt[]{9}}) \\ y^{^(\prime)}\text{ = -}(3)/(2)\text{ }\cdot\text{ }(1)/(3) \\ y^{^(\prime)}\text{ = -}(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/88r9tfoufobq8ga0fiy0310sln0n12u6fn.png)
3. Now, determine the equation of the line tangent at (-1,3)
![\begin{gathered} y-y_1=m(x-x_1) \\ y\text{ - 3 = -}(1)/(2)(x\text{ + 1)} \\ y\text{ = -}(x)/(2)\text{ - }(1)/(2)\text{ + 3} \\ y\text{ = -}(x)/(2)\text{ + }(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jrlaq3mvprazrmta8386blcrnjljn2ez5o.png)