Solution:
Step1:
The triangle under considration is a right angle triangle
Step 2:
One of the required trigonometric ratios that is helpful here is;

Step 3:
Crossing multiplication;
x sin 45 = 13
Step 4:
Dividing both sides by sin 45
![\begin{gathered} x\text{ = }\frac{13}{\sin \text{ 45}} \\ x=13\text{ / }\frac{1}{\sqrt[]{2}} \\ x\text{ = 13 x }\frac{\sqrt[]{2}}{1} \\ x\text{ = 13 }\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pqu33z56d78d37w27ei2y7i22wyk4jcokm.png)
Conclusion:
The value of x in the figure given is 13 root 2