We will use the following trigonometric laws, sine law and cosine law.
Cosine law is :
![c^2=a^2+b^2-2ab\cos C](https://img.qammunity.org/2023/formulas/mathematics/high-school/7xuakf37j2toz2151r22q5nwlfcp4icl35.png)
Sine law is :
![(a)/(\sin A)=(b)/(\sin B)=(c)/(\sin C)](https://img.qammunity.org/2023/formulas/mathematics/college/ulgkpk1301y5kolk344hriqzqe10ewrdh2.png)
From the problem, we have B = 74 degrees, a = 38 and c = 41
We need first to find the value of b using cosine law, note that the missing value is b, so we will rewrite the cosine law as b in terms of a and c :
![b^2=a^2+c^2-2ac\cos B](https://img.qammunity.org/2023/formulas/mathematics/college/fkixoobkvmhzawaeg4rncwqm8zesyvrsuq.png)
Substitute the given values and solve for b :
![\begin{gathered} b^2=38^2+41^2-2(38)(41)\cos 74 \\ b^2=3125-3116\cos 74 \\ b=\sqrt[]{3125-3116\cos 74} \\ b=47.60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/17t87th562aahq83n6nz7vq9a0hnzmggad.png)
Next is to use the sine law with B = 74 degrees, b = 47.60 and a = 38.
![\begin{gathered} (b)/(\sin B)=(a)/(\sin A) \\ (47.60)/(\sin 74)=(38)/(\sin A) \\ \sin A=(38\sin 74)/(47.60) \\ \sin A=0.7674 \\ \arcsin (\sin A)=\arcsin (0.7674) \\ A=50.12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/poohpufk6qxvvidbqnhc8711bd7z3sou1i.png)
The answer is C. m∠A = 50.1 degrees