Given the function
![y=(1)/(4)x](https://img.qammunity.org/2023/formulas/mathematics/college/saxw4rytpyfyep91gz2920hkqcm5r7ic7n.png)
the vertical line is given by the point
( x , 0 )
the area of the triangle is
![At=(b*h)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/jjcqk0o9n8h89yxoj6ro5bnqlmadxyilb7.png)
where
base= value of x
height=value of y
then
the expression of the area as a function of x is
![At=(x*(1)/(4)x)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/sh4jx5acmy7l8el1fhjwjiadyiaencbc0a.png)
![At(x)=(x^2)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/mvgcnq42hqdg1os1dzl8hx0vn62hsnky68.png)
Then when x=5
![At(5)=(5^2)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/7vphfmzvpptmfqoevao6a4q8u442l3eqta.png)
![At(5)=(25)/(8)=3.125un^2](https://img.qammunity.org/2023/formulas/mathematics/college/xmn8t4p15tyue63txqizlbeamw5yyrmmi3.png)
The volume of the cone is given by
![Vc=(1)/(3)\pi *r^2*h](https://img.qammunity.org/2023/formulas/mathematics/college/9gh7475lubabmcvbvnns98t2wr8onf3o6e.png)
where
h= value of x
r= value of y
then the volume of the cone as a function of x is
![Vc=(1)/(3)\pi *((1)/(4)x)^2*x](https://img.qammunity.org/2023/formulas/mathematics/college/qkq64okxw7pyrdsgkm5yammaf4nrw4o0r0.png)
![Vc=(\pi x^3)/(3*4^2)](https://img.qammunity.org/2023/formulas/mathematics/college/qrd6l5n569db42ge1pn7y9op30txqk1zgy.png)
![Vc(x)=(\pi x^3)/(48)](https://img.qammunity.org/2023/formulas/mathematics/college/ej07rnh05f4ane3mmnhzud21anj502donq.png)
The volume of the cone when x=16 is
![Vc(16)=(\pi(16)^3)/(48)](https://img.qammunity.org/2023/formulas/mathematics/college/x7bhzoywjevjnvyerqn4fn0nuxmd7tq1ww.png)
![Vc(16)=(256\pi)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/6eklesos7abpl6bdn1sbd8ucknsda2cx3e.png)
![Vc(16)=(256\pi)/(3)=268.082un^3](https://img.qammunity.org/2023/formulas/mathematics/college/wol356vwu0fznm9ddnpf8xv3ca3vikiid4.png)