Answer:
The direction of the resultant force on the ball = 28.3°
Step-by-step explanation:
Sue's foot exerts a force of 28.85 N East
Jenny's foot exerts a force of 15.53 N North
This can be represented diagrammatically as:
The magnitude of the resultant force, R, is calculated using the Pythagora's theorem
![\begin{gathered} R^2=28.85^2+15.53^2 \\ R=\sqrt[]{28.85^2+15.53^2} \\ R=32.76N \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xlnhcvj92b5dv9f73w7is2c17ps1641b3d.png)
The resultant force on the ball is 32.76N
The direction of the resultant force is given as:
![\begin{gathered} \theta\text{ =}\tan ^(-1)\text{ }(15.53)/(28.85) \\ \theta\text{ =}\tan ^(-1)\text{ }0.5383 \\ \theta=28.3^0 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8ozl4h2i46aft64xdtxrsamaazcfft7mwz.png)
The direction of the resultant force on the ball = 28.3°