217k views
2 votes
Evaluate. Then interpret the result in terms of the area above and/or below the x-axis. 1 2 f (x² – 3x) dx -1 1 S (33 – 3x) dx = (Type an integer or a simplified fraction.) -1

Evaluate. Then interpret the result in terms of the area above and/or below the x-example-1
User Elga
by
3.6k points

1 Answer

3 votes

Calculate the value of


\int (x^3-3x)dx
\int (x^3-3x)dx=(x^4)/(4)-(3x^2)/(2)

Apply the limits implies,


\begin{gathered} \int ^{(1)/(2)}_(-1)(x^3-3x)dx=\lbrack(x^4)/(4)-(3x^2)/(2)\rbrack^{(1)/(2)}_(-1) \\ =(1)/(64)-(3)/(8)-(1)/(4)+(3)/(2) \\ =(57)/(64) \end{gathered}

Therefore, the answer is 0.89.

Nearest integer is 1.

User David Gardner
by
3.4k points