176k views
2 votes
Can anyone answer this? i’ve had a hard time answering it. It’s a practice problem that I just need answered

Can anyone answer this? i’ve had a hard time answering it. It’s a practice problem-example-1
User Vikhyat
by
8.3k points

1 Answer

4 votes

To get the value of m x H

We will first get the value of m and then H

To get the value of m


3\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=(2)/(3)m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}


\begin{gathered} \mathrm{Switch\: sides} \\ \\ (2)/(3)m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=3\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix} \end{gathered}


(2)/(3)m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=\begin{pmatrix}-3 & 6 \\ 12 & 24\end{pmatrix}


\begin{gathered} (2)/(3)m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=\begin{pmatrix}-3 & 6 \\ 12 & 24\end{pmatrix} \\ \\ \mathrm{Multiply\: both\: sides\: by\: }(3)/(2) \\ \\ (3)/(2)\cdot(2)/(3)m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=(3)/(2)\begin{pmatrix}-3 & 6 \\ 12 & 24\end{pmatrix} \\ \\ m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=(3)/(2)\begin{pmatrix}-3 & 6 \\ 12 & 24\end{pmatrix} \end{gathered}


\begin{gathered} m\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}=\begin{pmatrix}-(9)/(2) & 9 \\ 18 & 36\end{pmatrix} \\ \mathrm{Multiply\: both\: sides\: of\: the\: equation\: by}\: \begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}^(-1)\: \mathrm{from\: the\: right} \\ XA=B\quad \Rightarrow\quad \: X=BA^(-1) \\ m=\begin{pmatrix}-(9)/(2) & 9 \\ 18 & 36\end{pmatrix}\begin{pmatrix}-1 & 2 \\ 4 & 8\end{pmatrix}^(-1) \end{gathered}

The next is to get H


(H\text{ +\lbrack{}1 4 -2\rbrack) + \lbrack{}3 2 -6\rbrack = \lbrack-2 8 -1\rbrack + (\lbrack{}1 4 -2\rbrack + \lbrack{}3 2 -6\rbrack)}

Let H be represented by [ A B C] so that


\mleft(\begin{pmatrix}A & B & C\end{pmatrix}+\begin{pmatrix}1 & 4 & -2\end{pmatrix}\mright)+\begin{pmatrix}3 & 2 & -6\end{pmatrix}=\mleft(\begin{pmatrix}-2 & 8 & -1\end{pmatrix}\mright)+\mleft(\begin{pmatrix}1 & 4 & -2\end{pmatrix}+\begin{pmatrix}3 & 2 & -6\end{pmatrix}\mright)

=>


\mleft(\begin{pmatrix}A & B & C\end{pmatrix}+\begin{pmatrix}1 & 4 & -2\end{pmatrix}\mright)+\begin{pmatrix}3 & 2 & -6\end{pmatrix}=\mleft(\begin{pmatrix}-2 & 8 & -1\end{pmatrix}\mright)+\mleft(\begin{pmatrix}1 & 4 & -2\end{pmatrix}+\begin{pmatrix}3 & 2 & -6\end{pmatrix}\mright)

=> Simplifying further


\begin{pmatrix}A+4 & B+6 & C-8\end{pmatrix}=\begin{pmatrix}2 & 14 & -9\end{pmatrix}


A=-2,\: C=-1,\: B=8

Thus,


\begin{gathered} H=\lbrack A\text{ B C\rbrack} \\ H=\lbrack-2\text{ }8\text{ -1\rbrack} \end{gathered}

The final step will be to find m x H

To simplify m

Therefore


m=(9)/(2)

Therefore

m x H will be


(9)/(2)*\lbrack-2\text{ 8 -1\rbrack}

The answer is:


\lbrack-9\text{ 36 -}(9)/(2)\rbrack

Can anyone answer this? i’ve had a hard time answering it. It’s a practice problem-example-1
Can anyone answer this? i’ve had a hard time answering it. It’s a practice problem-example-2
Can anyone answer this? i’ve had a hard time answering it. It’s a practice problem-example-3
User Hyomin
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories