The Solution:
Given the equation of the parabola in vertex form:
![y=ax^2-1](https://img.qammunity.org/2023/formulas/mathematics/college/6e2ku43kk54bgn3fz6mglxmi4kkjtv5kgx.png)
![y=(1)/(4p)(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/high-school/i433ht7m110oqajxznb938fi75uz58y8qd.png)
![\begin{gathered} \text{ Focus: (h,K+p)=(0,-1)} \\ h=0 \\ k+p=-1\ldots\text{eqn}(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9lorqqueaw7lowtac9gzpafvdqf8hr5ghn.png)
By directrix:
![\begin{gathered} y=k-p \\ 0=k-p \\ k-p=0\ldots eqn(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/axmbyps6zrzypu8eokfhvr0uhjhusm4zu6.png)
Solving eqn(1) and eqn(2) simultaneously, we get
![\begin{gathered} 2k=-1 \\ \\ k=-(1)/(2)=-0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wqqleahzpdd7liz8owqisds1lqua3evt1g.png)
So, the directrix is:
![(h,k)=(0,-0.5)](https://img.qammunity.org/2023/formulas/mathematics/college/yrq8y8a290n38ut5zrfpnz11p67k12nl00.png)
So, the equation of the parabola is
![\begin{gathered} y=(1)/(4(-0.5))x^2-0.5 \\ \\ y=-0.5x^2-0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o08q4r3y9d09m8il1jz1uc4syy3k9p7pf3.png)
So, the value of p is -0.5
Thus, the equation of the parabola in vertex form is:
![y=-0.5x^2-0.5](https://img.qammunity.org/2023/formulas/mathematics/college/svkk452kaqhuzjixdvbi7vnvxyn363bjub.png)