50.9k views
3 votes
Use the Trapezoidal Rule to approximate ∫73x2+6‾‾‾‾‾‾√dx using n=3. Round your answer to the nearest hundredth.

Use the Trapezoidal Rule to approximate ∫73x2+6‾‾‾‾‾‾√dx using n=3. Round your answer-example-1
User Kenyatta
by
7.7k points

1 Answer

4 votes

Answer: 22.39

Given:


\int_3^7√(x^2+6)dx\text{ }n=3

The trapezoidal rule states that:


\int_a^bf(x)dx\approx(\Delta x)/(2)(f(x_0)+2f(x_1)+2f(x_2)+2f(x3)+...+f(x_n)

Where:


\Delta x=(b-a)/(n)

From the given, we know that:


\begin{gathered} f(x)=√(x^2+6) \\ a=3 \\ b=7 \\ n=3 \end{gathered}

With this, we know that:


\Delta x=(7-3)/(3)=(4)/(3)

We will then divide the interval [3,7] into n=3 subintervals of 4/3, which will give us:


3,(13)/(3),(17)/(3),7

Now, we will evaluate the function at these endpoints:


\begin{gathered} f(x)=√(x^2+6) \\ \Rightarrow f(3)=√((3)^2+6)=√(15) \\ \operatorname{\Rightarrow}2f((13)/(3))=2\sqrt{((13)/(3))^2+6}=(2√(223))/(3) \\ \operatorname{\Rightarrow}2f((17)/(3))=2\sqrt{((17)/(3))^2+6}=(14√(7))/(3) \\ \Rightarrow f(7)=√((7)^2+6)=√(55)\frac{}{} \end{gathered}

We will then sum up the values and multiply by Δx/2:


\begin{gathered} (\Delta x)/(2)=((4)/(3))/(2)=(2)/(3) \\ \Rightarrow(2)/(3)(√(15)+(2√(223))/(3)+(14√(7))/(3)+√(55)) \\ =22.3943\approx22.39 \end{gathered}

Therefore,


\int_3^7√(x^2+6)dx\approx22.39

User DenNukem
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories