50.8k views
3 votes
Use the Trapezoidal Rule to approximate ∫73x2+6‾‾‾‾‾‾√dx using n=3. Round your answer to the nearest hundredth.

Use the Trapezoidal Rule to approximate ∫73x2+6‾‾‾‾‾‾√dx using n=3. Round your answer-example-1
User Kenyatta
by
4.4k points

1 Answer

4 votes

Answer: 22.39

Given:


\int_3^7√(x^2+6)dx\text{ }n=3

The trapezoidal rule states that:


\int_a^bf(x)dx\approx(\Delta x)/(2)(f(x_0)+2f(x_1)+2f(x_2)+2f(x3)+...+f(x_n)

Where:


\Delta x=(b-a)/(n)

From the given, we know that:


\begin{gathered} f(x)=√(x^2+6) \\ a=3 \\ b=7 \\ n=3 \end{gathered}

With this, we know that:


\Delta x=(7-3)/(3)=(4)/(3)

We will then divide the interval [3,7] into n=3 subintervals of 4/3, which will give us:


3,(13)/(3),(17)/(3),7

Now, we will evaluate the function at these endpoints:


\begin{gathered} f(x)=√(x^2+6) \\ \Rightarrow f(3)=√((3)^2+6)=√(15) \\ \operatorname{\Rightarrow}2f((13)/(3))=2\sqrt{((13)/(3))^2+6}=(2√(223))/(3) \\ \operatorname{\Rightarrow}2f((17)/(3))=2\sqrt{((17)/(3))^2+6}=(14√(7))/(3) \\ \Rightarrow f(7)=√((7)^2+6)=√(55)\frac{}{} \end{gathered}

We will then sum up the values and multiply by Δx/2:


\begin{gathered} (\Delta x)/(2)=((4)/(3))/(2)=(2)/(3) \\ \Rightarrow(2)/(3)(√(15)+(2√(223))/(3)+(14√(7))/(3)+√(55)) \\ =22.3943\approx22.39 \end{gathered}

Therefore,


\int_3^7√(x^2+6)dx\approx22.39

User DenNukem
by
4.6k points