Given:
![f(t)=(t-4)(t-2)^3(t-3)^2](https://img.qammunity.org/2023/formulas/mathematics/college/zmrsp3x7dkcgn7qebqddrfmqmmk5y58wxu.png)
Required:
We need to find the long run behavior.
Step-by-step explanation:
Recall that the long-run behavior of a polynomial function is determined by its leading term.
Consider the given polynomial function.
![f(t)=(t-4)(t-2)^3(t-3)^2](https://img.qammunity.org/2023/formulas/mathematics/college/zmrsp3x7dkcgn7qebqddrfmqmmk5y58wxu.png)
![f(t)=t(1-(4)/(t))t^3(1-(2)/(t))^3t^2(1-(3)/(t))^2](https://img.qammunity.org/2023/formulas/mathematics/college/lng5327iuffb4ughyxg111i7c21qq4mtp5.png)
![f(t)=t^6(1-(4)/(t))(1-(2)/(t))^3(1-(3)/(t))^2](https://img.qammunity.org/2023/formulas/mathematics/college/9w6kbujuuivgd31ypttjvskwws8vclu4hh.png)
![\text{ The leading term is }t^6](https://img.qammunity.org/2023/formulas/mathematics/college/5jv6jahvvphfedx3f8bg3czqy12whv1vli.png)
![Let\text{ }g(t)=t^6.](https://img.qammunity.org/2023/formulas/mathematics/college/chnsvwwnec5a92rtev31q2zj6trxm8g4ws.png)
Take the limit as infinity.
![\lim_(t\to\infty)g(t)=\lim_(t\to\infty)t^6](https://img.qammunity.org/2023/formulas/mathematics/college/u43opsytx3o796gns90u9xfvgz9n2tks0n.png)
![g(t)\rightarrow\infty\text{ as t approches }\infty](https://img.qammunity.org/2023/formulas/mathematics/college/kuw39a40fxm1n8q33uj4uuxxph34145lim.png)
Take the limit as negative infinity.
![\lim_(t\to-\infty)g(t)=\operatorname{\lim}_(t\to-\infty)t^6]()
![g(t)\rightarrow\infty\text{ as t approches -}\infty.](https://img.qammunity.org/2023/formulas/mathematics/college/qe85el8wkek6hzvqdg44tua671yogtayjf.png)
Hence we get
![f(t)\rightarrow\infty\text{ as t }\rightarrow\text{ -}\infty\text{ and t}\rightarrow\infty](https://img.qammunity.org/2023/formulas/mathematics/college/yvwwv9c122rezarbt5a0vm7w4m7kya4bw0.png)
Final answer:
The long run behavior is infinity.