ANSWER:
3rd option
![w=37(\cos 341.075\degree,\sin 341.075\degree)](https://img.qammunity.org/2023/formulas/mathematics/college/y80zgzkjrkz5n382vpp1wgygd60yz6nst7.png)
Explanation:
Given:
w = 35i - 12j
We know that the trigonometric form is given as follows:
![w=|w|\cdot(\cos \theta,\sin \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/lrpamvucfy9nlbqazsaea6xss7r1jhr9nd.png)
The first thing is to calculate the normal of the vector, just like this:
![\begin{gathered} |w|=\sqrt[]{35^2+(-12)^2} \\ |w|=\sqrt[]{1225+144} \\ |w|=\sqrt[]{1369} \\ |w|=37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zmxrbfiigt212jkv6b9ptf9zgk1npieos2.png)
Now, we calculate the value of the angle by means of the sine, just like this:
![\begin{gathered} \sin \theta=(-12)/(37) \\ \theta=\sin ^(-1)_{}\mleft((-12)/(37)\mright) \\ \theta=18.925 \\ \theta=360-18.925 \\ \theta=341.075\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yi5lfrbc80s9rnv0hgwavmsgo79yx6z44v.png)
Therefore, the vector w in its trigonometric form is as follows:
![w=37(\cos 341.075\degree,\sin 341.075\degree)](https://img.qammunity.org/2023/formulas/mathematics/college/y80zgzkjrkz5n382vpp1wgygd60yz6nst7.png)